se Rating	2	NOTE: CRF formulae, factors and ratings are subject to change each calendar year	No
	R1= 0.06 * (L	* S) / (.75*DSPS/64)^.33 + 0.3*L + 0.20*S + DC + LBRC + StabC	:
Rated Length:	I -Base Sailin	Length (L1) + a length increment (DelL) for recent designs with broad sterns	
	L = L1 + DelL		
		65*LOA, L1 = 1.02*(LOA + 4* LWL) / 5	
	If LWL <c< td=""><td>65*LOA, L 1= 1.02*(LOA + 4*0.65*LOA) / 5</td><td>3</td></c<>	65*LOA, L 1= 1.02*(LOA + 4*0.65*LOA) / 5	3
	If Ag	e < 1990, DelL = 0	
		<= 0.75: DelL = 0	4
If Age => 1990 8	& Bm10 / Bma	< > 0.75: DelL = L1 * [15*{(Bm10 / Bmax) - 0.75} ^ 2.3]	
- Detect C	C C D		_
		upwind + downwind sail areas, adjusted for rig and shroud types actor*Shroud Type Factor*(RSAup + RSAdn) / 2} ^0.5	
RSAup; Rated SA, Upwind;		rctor~snroud Type Factor~(kSAup + KSAdh) / 2} ^0.5 RSAup = Jib + Main + Mizzen + Foresail	- '
hong, hated on, opwind,		RSAup=SRSF + RSAM + RSAY + RSAG	
Rated Foretriangel Ar		If LP% > 1.0: RSAF = 0.55 * IG * J * {1 + 1.5 * ((LP% * J) - J)/(LP% * J)}	
Rated Foretriangel Are		If LP% <= 1.0: RSAF=0.55*.96*(IG62+j^2)^0.5*J*LP%	
Rated Mainsail Area, for Jib H	Headed Main;	If P> 0: RSAM=.45*P*E	
Rated Mainsail Area for Gaff H	Headed Main;	If PG> 0: RSAM=0.55*PG*E	
Rated	d Mizzen Area;	If PY> 0: RSAY=0.5*PY*EY	
Rated Foresail Area		If B1> 0: RSAG=0.4*(P1+P3)/2*B1	
RSAdn; Rated SA, downwind;		RSAdn = Spin + Main + Mizzen + Foresail	
		RSAdn=SPIN + RSAM + RSAY + RSAG	
		f S-SPIN > A-SPIN: SPIN=S-SPIN S-SPIN =< A-SPIN: SPIN=A-SPIN	
		S-SPIN =< A-SPIN: SPIN=A-SPIN	
		S-SPIN=0.95*(ISP^2+J^2)^0.5*1.8*SPL*0.8*1.05 A-SPIN=0.95*(ISP^2+TSPJ^2)^0.5*1.75*TSP*0.75*1.0	
Displacement [DSPS	Declared value for boat weight as raced, without crew, in pounds	
Draft Correction [DC	Based on the difference between a Base Draft (BD) and the Rated Draft (RD)	:
	-	DC = 0.2 * L1 * ((RD/BD)^2.0 - 1)	
		Base Draft: BD = -0.0006 * L1 ^ 2 + 0.192 * L1 + 1.16	
		Rated Draft: If no centerboard: RD = DM	
		If Brd down draft (DMcb) > fixed draft: RD = DM + 0.70 * (DMcb-DM)	
Length/Beam Ratio Corr.		Based on the difference between a Base Length Beam Ratio and a Rated Length Beam Ratio	
		LBRC = 0.25 * L *{[RLBR / BLBR ^ 0.20 - 1.0]	
		Base LBR: BLBR= 0.037*L1+1.66	
		Rated LBR: RLBR = L/Bmax	
Stability Correction S	StabC	Based on the difference between a base righting moment and a calculated righting moment.	
		Makes use of declared ballast weight, calculated hydrostatics, and a calculated default crew weight	
		StabC = 0.10 * 11 * ((RMtot / RMbase)*1.6 - 1.0)	1
		StabC = 0.10 * L1 * ((RMtot / RMbase)^0.2 - 1.0)	
		RMtot = RMhull + RMCrew	
		RMhull = Disp * GMt * 0.0175	
		GMt = It/(DSPS/64) + VCB - VCG	
		VCB = -1*{((DSPS/64-Ballast/690) * .35 * Dh) + (Ballast/690 * (Dh + (Draft - Dh)/2)}/(DSPS/64)	
		Dh = (DSPS/64 - Ballast/690) / (LWL * Bmax * 0.9 * Cp * Cms)	
		Assumed canoe body Coefficient: Cp=0.55, Cms=.65	
		VCG = ((DSPS - Ballast) * CGnet + (Ballast * CGkeel)) / DSPS	
		CGnet = 0.60 * (L1/Dh) ^0.5 CGkeel = Dh + (Dm-Dh)/2 * (Keel Factor +0.03) ^3	
	If Dep 10/Dep	x > 0.75: RMcrew = (CrewCt -2) * 185 * ((Bm10+Bmax)/2 * 0.57 - 0.5 - 0.1*Dh)	
		=< 0.75; RMcrew = (CrewCt -2) * 185 * (Bmax * 0.45 - 0.5 - 0.1*Dh)	
		CrewCt = CrewWgt / 185	
		CrewVgt = (DSPS/2240 / (0.01*LWL)^3)/254)^0.375 * (RmHull/(DSPS*Bmax)/0.006)^0.4 * LWL^1.5 * 7.6	
		RMBase = 24.2*(BWL*L1^0.25)^2-7.25*(BWL*L1^.25)+2756	
		BWL=Bmax^.92*(Dh*7.25/Bmax)^0.08	
		RMBase; StabC=0.10*L1*((RmTot/RmBase)^1.60-1)	
	If RmTot =<	RMBase; StabC=0.10*L1*((RmTot/RmBase)^0.20-1)	
2021 Rating	Rating	R(ft) = R1 * Prop * DLF * SaDF * Keel * Spar * MAF	
		R(sec/mi) = 0.6* 3600 * {1/(Rft)^0.5 - 1/(100)^0.5} - 90	
		R(GPH) = R(sec/mi) + 535	
Prop Factor (Prop) F	Prop	Prop = assigned prop factor, based on installation type	
	Prop DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio	
		Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1	
		Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< 1.015; DLF = Base DLF	
		Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1	
Disp/Length Factor E	DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF= If Base DLF= Base DLF= Base DLF= Base DLF= Base DLF= Base DLF=	
Disp/Length Factor E	DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< 1.015; DLF = Base DLF Base DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)} ^ 0.025 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio	
Disp/Length Factor E	DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< 1.015; DLF = Base DLF Base DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)} ^ 0.025 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio If SaDFbase > 1.0130; SaDF = Base SaDF + (1 + SaDFbase -1.015)^3.0 - 1	
Disp/Length Factor E	DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< (1.015; DLF = Base DLF Base DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)}^0.0.25 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio If SaDFbase > 1.0130; SaDF = Base SaDF + (1 + SaDFbase -1.015)^3.0 - 1 If SaDFbase =< 1.0130; SaDF = SaDFbase	
Disp/Length Factor E	DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< 1.015; DLF = Base DLF Base DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)} ^ 0.025 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio If SaDFbase > 1.0130; SaDF = Base SaDF + (1 + SaDFbase -1.015)^3.0 - 1	
Disp/Length Factor E	DLF SaDF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< (1.015; DLF = Base DLF Based DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)} ^ 0.025 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio If SaDFbase > 1.0130; SaDF = Base SaDF + (1 + SaDFbase - 1.015)^3.0 - 1 If SaDFbase > 1.0130; SaDF = SaDFbase Base SaDF = ((S ^ 2 / (DSPS/64) ^ 0.67) / (0.18 * L1 + 19.5)) ^ 0.040 Base SaDF = ((S ^ 2 / (DSPS/64) ^ 0.67) / (0.18 * L1 + 19.5)) ^ 0.040	
Disp/Length Factor E	DLF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< (1.015; DLF = Base DLF Base DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)}^0.0.25 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio If SaDFbase > 1.0130; SaDF = Base SaDF + (1 + SaDFbase -1.015)^3.0 - 1 If SaDFbase =< 1.0130; SaDF = SaDFbase	
Disp/Length Factor [Sail Area/Disp Factor]	DLF SaDF	Based on the difference between a base Disp/Length ratio and the actual Disp/Length ratio If DLFbase > 1.015; DLF = DLFbase + (1 + DLFbase - 1.015)^4.0 -1 If Base DLF=< (1.015; DLF = Base DLF Based DLF = {(350 - 2.9 * L) / ((Disp/2240) / (0.01 * L) ^ 3)} ^ 0.025 Based on the difference between a base SA/Disp ratio and the actual SA/Disp ratio If SaDFbase > 1.0130; SaDF = Base SaDF + (1 + SaDFbase - 1.015)^3.0 - 1 If SaDFbase > 1.0130; SaDF = SaDFbase Base SaDF = ((S ^ 2 / (DSPS/64) ^ 0.67) / (0.18 * L1 + 19.5)) ^ 0.040 Base SaDF = ((S ^ 2 / (DSPS/64) ^ 0.67) / (0.18 * L1 + 19.5)) ^ 0.040	

Notes	Comments
1	The basic architecture of the 2017 reformulation of CRF was adapted from Nat Herreshoff's Universal Rule and from Olin Stephens' (et al) International Offshore Rule . Despite shortcomings exposed by agressive exploitation of loopholes over time, early versions of IOR did a quite good job of handicapping a variety boat boat sizes and types until it fell out of favor due to the humps, bumps and hollows that came to plague it in later years.
2	Effective sailing length 'L' is a primary driver of performance, and is taken as a weighted average of LOA and LWL, with LWL recognized as having a stronger effect on performance potential than LOA.
3	A cap on total overhang of 35% of LOA (typical of International Rule boats) limits any rating advantage stemming from overhang length and slope extremes (eg Sonder and Square Meter classes)
4	A declaration for Bm10 is only required for design dates after 1990. It addresses the added effective sailing length resulting from broad, powerful sterns in some contemporary designs.
5	The square root of sail area is taken to keep the rated units uniform in linear feet. For non-spinnaker ratings, RSAdn = RSAup See table of assigned Rig and Shroud Type factors
0	
7	CRF 2021 assumes a default SMW of 1.8*SPL in calculating symmetrical spinnaker area. Starting in 2022, calculations for S-SPIN will likley depend on actual measured SMW, beginning with newly built sails only.
8	CRF 2021 assumes a default AMG of 1.75*TPS in calculating asymmetrical spinnaker area. Starting in 2022, calculations for A-SPIN will likley depend on actual measured AMG, beginning with newly built sails only.
9	The declared DSPS is to be the estimated weight of the yacht as presented for racing, in pounds, excluding crew weight. For yachts that are primarily raced and daysailed, this is similar to 'light ship' (empty tanks, with minimal food and gear). For yachts that are equipped and provisioned for cruising while racing, this is similar to 'half load' (tanks half full, with ordinary food and gear).
10	Rated draft deeper than base draft speeds up rating
11	Base Draft (BD) is based on a second order polynomial fit to draft vs length across the Classic fleet
12	DM=maximum fixed draft.
13	DMcb=max centerboard down draft. CRF 2021 rates centerboard boats for 70% of the added depth of the board extension below the fixed draft
14	Length/beam ratio higher than base (for a long, narrow hull) speeds up rating
15	Base Length/Beam Ratio (BLBR) is based on a second order polynomial fit to LOA/Bmax ratios across the Classic fleet

16 Stability is a primary driver of sailboat performance potential, but physically measureing it is not a reasonable or practical requirement for the Classic fleet. The next best thing is to influence ratings via stability that is calculated rather than measured. Higher calculated stability does result in a faster CRF rating, but the effect is modest given the limited data available. 17 Calculated stability that is higher than base stability speeds up rating 18 If ballast weight is uncertain or unknown, a value is assigned that is typically 0.4*DSPS 19 Calculated RM including effect of crew weight 20 Empirically derived approximatation 21 The crew moment arm for contemproary boats with broad beam aft is greater than it is for typical Classic hulls. 22 Crew count assumes an average crew weight of 185 pounds. 23 Calculated crew weight taken from a recognized IMS formulation 24 Base RM includes crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet 25 Empirically derived approximatation 26 The rating in decimal feet reflects speed potential via an implieded effective sailing Length. 27 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 28 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR 29 See table of assigned factors 30	r	
18 If ballast weight is uncertain or unknown, a value is assigned that is typically 0.4*DSPS 19 Calculated RM including effect of crew weight 20 Empirically derived approximatation 21 The crew moment arm for contemproary boats with broad beam aft is greater than it is for typical Classic hulls. 22 Crew count assumes an average crew weight of 185 pounds. 23 Calculated crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet 24 Base RM includes crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet 25 Empirically derived approximatation 26 The rating in decimal feet reflects speed potential via an implieded effective sailing Length. 27 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 28 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR 29 See table of assigned factors 30 Disp/length ratio lower (lighter) than base speeds up rating 31 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet	16	measureing it is not a reasonable or practical requirement for the Classic fleet. The next best thing is to influence ratings via stability that is calculated rather than measured. Higher calculated stability does result in a faster CRF rating,
If ballast weight is uncertain or unknown, a value is assigned that is typically 0.4*DSPS Image: Calculated RM including effect of crew weight Image: Calculated RM includes approximatation Image: Calculated RM includes crew weight of 185 pounds. Image: Calculated crew weight taken from a recognized IMS formulation Image: Calculated crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet Image: Calculated crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet Image: Calculated crew weight approximatation Image: Calculated to typical PHRF handicaps w/scratch R=100 Image: Calculated to typical PHRF handicaps w/scratch R=100 Image: Calculated to typical PHRF handicaps weight of Calculated to the train of the train the train the train train the train train the train train train the train train train train the train train train train train the train trai	17	Calculated stability that is higher than base stability speeds up rating
20 Empirically derived approximatation 21 The crew moment arm for contemproary boats with broad beam aft is greater than it is for typical Classic hulls. 22 Crew count assumes an average crew weight of 185 pounds. 23 Calculated crew weight taken from a recognized IMS formulation 24 Base RM includes crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet 25 Empirically derived approximatation 26 The rating in decimal feet reflects speed potential via an implieded effective sailing Length. 27 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 28 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR 29 See table of assigned factors 20 See Lable of assigned factors 21 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 23 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect di	18	If ballast weight is uncertain or unknown, a value is assigned that is typically 0.4*DSPS
21 The crew moment arm for contemproary boats with broad beam aft is greater than it is for typical Classic hulls. 22 Crew count assumes an average crew weight of 185 pounds. 23 Calculated crew weight taken from a recognized IMS formulation 24 Base RM includes crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet 25 Empirically derived approximatation 26 The rating in decimal feet reflects speed potential via an implieded effective sailing Length. 27 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 28 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR 29 See table of assigned factors 30 Disp/length ratio lower (lighter) than base speeds up rating 31 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associ	19	Calculated RM including effect of crew weight
 is for typical Classic hulls. Crew count assumes an average crew weight of 185 pounds. Calculated crew weight taken from a recognized IMS formulation Calculated crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet Empirically derived approximatation The rating in decimal feet reflects speed potential via an implieded effective sailing Length. Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 Sec and the trating in decimal feet reflects speed sup rating The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet SA/Disp ratio higher than base speeds up rating The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	20	Empirically derived approximatation
 Calculated crew weight taken from a recognized IMS formulation Base RM includes crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet Empirically derived approximatation The rating in decimal feet reflects speed potential via an implieded effective sailing Length. Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR Disp/length ratio lower (lighter) than base speeds up rating The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet SA/Disp ratio higher than base speeds up rating The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	21	
 Base RM includes crew weight, and is based on a second order polynomial fit to Rmtot vs a function of Bmax and L across the Classic fleet Empirically derived approximatation The rating in decimal feet reflects speed potential via an implieded effective sailing Length. Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR See table of assigned factors Disp/length ratio lower (lighter) than base speeds up rating The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet SA/Disp ratio higher than base speeds up rating The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. See table of assigned spar material factors. The factors used reflect differences in atability and pitch moment of inertia associated with the different mast material types and number of masts. 	22	Crew count assumes an average crew weight of 185 pounds.
 vs a function of Bmax and L across the Classic fleet Empirically derived approximatation The rating in decimal feet reflects speed potential via an implieded effective sailing Length. Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR See table of assigned factors Disp/length ratio lower (lighter) than base speeds up rating The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet SA/Disp ratio higher than base speeds up rating The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	23	Calculated crew weight taken from a recognized IMS formulation
26 The rating in decimal feet reflects speed potential via an implieded effective sailing Length. 27 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 28 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR 29 See table of assigned factors 30 Disp/length ratio lower (lighter) than base speeds up rating 31 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts.	24	
Length. 27 Sec/mi, normalized to typical PHRF handicaps w/scratch R=100 28 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR 29 See table of assigned factors 30 Disp/length ratio lower (lighter) than base speeds up rating 31 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts.	25	Empirically derived approximatation
 Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR See table of assigned factors Disp/length ratio lower (lighter) than base speeds up rating The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet SA/Disp ratio higher than base speeds up rating The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	26	
29 See table of assigned factors 30 Disp/length ratio lower (lighter) than base speeds up rating 31 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts.	27	Sec/mi, normalized to typical PHRF handicaps w/scratch R=100
 30 Disp/length ratio lower (lighter) than base speeds up rating 31 The Base DLF is a linear function that reflects the Disp/L distributioin across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	28	Sec/mi, normalized to VPP GPH ratings, eg via ORCi or ORR
 31 The Base DLF is a linear function that reflects the Disp/L distribution across the Classic fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distribution across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	29	See table of assigned factors
fleet 32 SA/Disp ratio higher than base speeds up rating 33 The Base SaDF is a linear function that reflects the SA/Disp distributioin across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts.	30	Disp/length ratio lower (lighter) than base speeds up rating
 33 The Base SaDF is a linear function that reflects the SA/Disp distribution across the Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	31	
Classic fleet 34 See table of assigned keel typefactors. The factors used reflect the differences in appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts.	32	SA/Disp ratio higher than base speeds up rating
 appendage wetted area, aspect ratio, and center of gravity associated with the various keel types. 35 See table of assigned spar material factors. The factors used reflect differences in stability and pitch moment of inertia associated with the different mast material types and number of masts. 	33	
stability and pitch moment of inertia associated with the different mast material types and number of masts.	34	appendage wetted area, aspect ratio, and center of gravity associated with the various
36 The factor used is taken from IOR.	35	stability and pitch moment of inertia associated with the different mast material types
	36	The factor used is taken from IOR.